Algebraic Geometry, Part II, Example Sheet 4,2018

Assume throughout that the base field k is algebraically closed. If it helps, feel free to assume throughout that it has characteristic zero.

- 1. A smooth irreducible projective curve V is covered by two affine pieces (with respect to different embeddings) which are affine plane curves with equations $y^2 = f(x)$ and $v^2 = g(u)$ respectively, with f a square-free polynomial of even degree 2n and u = 1/x, $v = y/x^n$ in k(V). Determine the polynomial g(u) and show that the canonical class on V has degree 2n 4. Why can we not just say that V is the projective plane curve associated to the affine curve $y^2 = f(x)$?
- 2. Let $V_0 \subset \mathbb{A}^2$ be the affine curve with equation $y^3 = x^4 + 1$, and let $V \subset \mathbb{P}^2$ be its projective closure. Show that V is smooth, and has a unique point Q at infinity. Let ω be the rational differential dx/y^2 on V. Show that $v_P(\omega) = 0$ for all $P \in V_0$, prove that $v_Q(\omega) = 4$ and hence that ω , $x\omega$ and $y\omega$ are all regular on V.
- 3. Let V be a smooth irreducible projective curve and $P \in V$ any point. Show that there exists a nonconstant rational function on V which is regular everywhere except at P. Show moreover that there exists an embedding $\phi \colon V \longrightarrow \mathbb{P}^n$ such that $\phi^{-1}(\{X_0 = 0\}) = \{P\}$. In particular, $V \setminus \{P\}$ is an affine curve. If V has genus g, show that there exists a nonconstant morphism $V \to \mathbb{P}^1$ of degree g.
- 4. Let P_{∞} be a point on an elliptic curve X (smooth irreducible projective curve of genus 1) and $\alpha_{3P_{\infty}}: X \xrightarrow{\sim} W \subset \mathbb{P}^2$ the projective embedding, with image W. Show that $P \in W$ is a point of inflection if and only if 3P = 0 in the group law determined by P_{∞} . Deduce that if P and Q are points of inflection then so is the third point of intersection of the line PQ with W.
- 5. Let $V: ZY^2+Z^2Y=X^3-XZ^2$ and take $P_0=(0:1:0)$ for the identity of the group law. Calculate the multiples $nP=P\oplus\cdots\oplus P$ of P=(0:0:1) for $2\leq n\leq 4$.
- 6. Show that any morphism from a smooth irreducible projective curve of genus 4 to a smooth irreducible projective curve of genus 3 must be constant.
- 7. (Assume $\operatorname{char}(k) \neq 2$) (i) Let $\pi \colon V \to \mathbb{P}^1$ be a hyperelliptic cover, and $P \neq Q$ ramification points of π . Show that $P Q \not\sim 0$ but $2(P Q) \sim 0$.
 - (ii) Let g(V)=2. Show that every divisor of degree 2 on V is linearly equivalent to P+Q for some $P,Q\in V$, and deduce that every divisor of degree 0 is linearly equivalent to P-Q' for some $P,Q'\in V$.
 - (iii) Show that if g(V)=2 then the subgroup $\{[D]\in \mathrm{Cl}^0(V)\mid 2[D]=0\}$ of the divisor class group of V has order 16.
- 8. Show that a smooth plane quartic is never hyperelliptic.
- 9. Let $V: X_0^6 + X_1^6 + X_2^6 = 0$, a smooth irreducible plane curve. By applying the Riemann–Hurwitz formula to the projection to \mathbb{P}^1 given by $(X_0: X_1)$, calculate the genus of V.

Now let $\phi \colon V \to \mathbb{P}^2$ be the morphism $(X_i) \mapsto (X_i^2)$. Identify the image of ϕ and compute the degree of ϕ .

10. Let $V \subset \mathbb{P}^3$ be the intersection of the quadrics Z(F), Z(G) where $\operatorname{char}(k) = 0$ and

$$F = X_0 X_1 + X_2^2, \quad G = \sum_{i=0}^3 X_i^2$$

- (i) Show that V is a smooth curve (possibly reducible).
- (ii) Let $\phi = (X_0 \ X_1 \ X_2) \colon \mathbb{P}^3 \longrightarrow \mathbb{P}^2$. (This map is the projection from the point $(\ 0\ 0\ 1)$ to \mathbb{P}^2 .) Show that $\phi(V)$ is a conic $C \subset \mathbb{P}^2$. By parametrising C, compute the ramification of ϕ and show that $\phi \colon V \to C$ has degree 2. Deduce that V is irreducible of genus 1.